Stack effect
As air gets warmer it becomes less dense and so more buoyant. This means that warm air has a tendency to rise.
This effect can be used to naturally ventilate buildings. Cooler outside air is drawn into buildings at a lower level, it is warmed by sources of heat within the building (such as people, equipment, heating and solar gain), and then rises through the building to vent out at a higher level.
A positive pressure area is created at the top of a building and negative pressure area at the bottom. This process can take place without mechanical assistance, simply by introducing openings at the bottom and the top of buildings. It is known as the stack effect or stack ventilation.
Stack ventilation can be particularly effective as a means of naturally ventilating tall buildings that include vertical spaces which rise throughout their height, for example buildings with central atriums. This can be useful in deep buildings, where cross ventilation may not be sufficient to penetrate to spaces in the heart of the building.
The effectiveness of stack ventilation is influenced by:
- The effective area of openings.
- The height of the stack.
- The temperature difference between the bottom and the top of the stack.
- Pressure differences outside the building.
The stack effect is a relatively weak force in many buildings (although it can be strong enough to fly a kite in large buildings) and so it may be necessary to have large openings with minimal resistance.
The pressure will vary through the height of the building, with the outside pressure being higher than the inside pressure at the bottom of the building, but the inside pressure being higher at the top. As a consequence, there will be a neutral plane, which is the level at which the internal and external pressure are equal. Above the neutral plane the internal air pressure will be positive and so air will tend to exhaust to the outside. Below the neutral plane, the internal air pressure will be negative and air will tend to be drawn into the building. This requires careful design to ensure that the neutral plane is above the spaces that need to be ventilated from the outside.
Stack ventilation is not appropriate for all building types, and as the stack effect requires that the internal temperature is higher than the outside temperature, it may not always provide a sufficient cooling effect by itself and additional mechanical cooling may be necessary. In particular, rooms adjoining the warmer part of the stack may experience poor ventilation and unwanted heat gains. In addition, there may be conflicts between the requirement for large unrestricted openings between the outside and the heart of the building, and requirements for security, privacy, noise control, fire compartmentation, and so on.
Designing natural ventilation can become extremely complex because of the interaction between cross ventilation and the stack effect as well as complex building geometries and complex distribution of openings. This can require computer analysis.
NB: Approved document F, Ventilation, defines 'passive stack ventilation' (PSV) as, ââĤa ventilation system using ducts from terminals in the ceiling of rooms to terminals on the roof that extract air to the outside by a combination of the natural stack effect and the pressure effects of wind passing over the roof of the building.â
NB: Stack ventilation can also refer to secondary ventilation stacks used to overcome air pressure changes in pipework in high-rise buildings. For more information see: Secondary ventilation stacks in tall buildings.
[edit] Related articles on Designing Buildings
- Computational fluid dynamics.
- Cross ventilation.
- Dynamic thermal modelling of closed loop geothermal heat pump systems.
- Energy targets.
- Face velocity.
- Natural ventilation.
- Passive building design.
- Secondary ventilation stacks in tall buildings.
- Single-sided ventilation.
- Solar chimney.
- Thermal comfort.
- Types of ventilation.
- U-values.
- Natural ventilation.
- Ventilation.
- Warm roof.
- Windcatcher.
Featured articles and news
OpenUSD possibilities: Look before you leap
Being ready for the OpenUSD solutions set to transform architecture and design.
Global Asbestos Awareness Week 2025
Highlighting the continuing threat to trades persons.
Retrofit of Buildings, a CIOB Technical Publication
Now available in Arabic and Chinese aswell as English.
The context, schemes, standards, roles and relevance of the Building Safety Act.
Retrofit 25 â What's Stopping Us?
Exhibition Opens at The Building Centre.
Types of work to existing buildings
A simple circular economy wiki breakdown with further links.
A threat to the creativity that makes London special.
How can digital twins boost profitability within construction?
The smart construction dashboard, as-built data and site changes forming an accurate digital twin.
Unlocking surplus public defence land and more to speed up the delivery of housing.
The Planning and Infrastructure Bill
An outline of the bill with a mix of reactions on potential impacts from IHBC, CIEEM, CIC, ACE and EIC.
Farnborough College Unveils its Half-house for Sustainable Construction Training.
Spring Statement 2025 with reactions from industry
Confirming previously announced funding, and welfare changes amid adjusted growth forecast.
Scottish Government responds to Grenfell report
As fund for unsafe cladding assessments is launched.
CLC and BSR process map for HRB approvals
One of the initial outputs of their weekly BSR meetings.
Building Safety Levy technical consultation response
Details of the planned levy now due in 2026.
Great British Energy install solar on school and NHS sites
200 schools and 200 NHS sites to get solar systems, as first project of the newly formed government initiative.
600 million for 60,000 more skilled construction workers
Announced by Treasury ahead of the Spring Statement.